ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Квадранты оптические КО

Назначение средства измерений

Квадрант оптический КО (далее – квадрант) предназначен для измерения углов наклона плоских и цилиндрических поверхностей и для их установки под заданным углом к горизонтальной плоскости. Квадранты применяются в лабораториях научно-исследовательских институтов, машиностроительных предприятий, строительных организаций и других отраслях народного хозяйства.

Описание средства измерений

Квадранты изготавливаются трех модификаций: КО-10 (с ценой деления 10^2), КО-60 и КО-60М (с ценой деления 60^2).

Принцип действия квадранта заключается в том, что отсчет угла наклона основания относительно оси уровня производится по стеклянному лимбу с помощью отсчетного микроскопа. Квадрант работает как при естественном, так и при искусственном освещении.

Оптическая схема квадранта КО-10 (рисунок 1).

Лучи света от зеркала (16) через защитное стекло (15) попадают в светопровод (7) и направляются им на лимб (14) и шкалу (3). Лучи, передающие изображение штрихов шкалы и штрихов лимба (нижнее в поле зрения), через сетку (2) с индексом, через призмы (1) и (19) проходят в объектив, состоящий из линз (4) и (5). Лучи, передающие изображение штрихов диаметрально противоположной части лимба (верхнее поле зрения), призмой (17), клиньями (18) микрометра и призмой (19) направляются также в объектив. Объектив через призму (13) и разделительный блок, состоящий из призмы (11) и клиньев (8) и (12), передаёт изображение штрихов шкалы и двух диаметрально противоположных частей лимба в фокальную плоскость окуляра. Окуляр состоит из линз (9) и (10). Лучи, передающие изображение шкалы, отражаются зеркальным участком грани призмы (11). Лучи, передающие нижнее изображение штрихов лимба, отражаются зеркальным участком клина (12), а зеркальная грань клина (8) отражает лучи, передающие верхнее изображение штрихов. Линия раздела между верхним и нижним изображениями штрихов образуются границей серебрения на клине (12). Пластина (6) компенсирует разность верхнего и нижнего изображений штрихов лимба, возникающую в разделительном блоке. Клинья (18) совместно образуют плоскопараллельную пластинку. Сдвигом клиньев перпендикулярно оптической оси меняется толщина пластинки, и этим достигается правильность показаний отсчётного устройства.

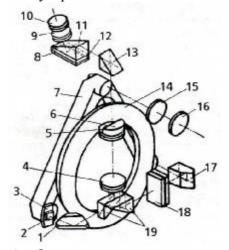


Рисунок 1 – Оптическая схема квадранта КО-10

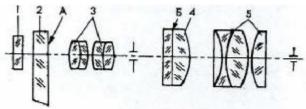

Конструктивно квадрант состоит из следующих основных частей: оптического устройства, наружного кожуха с окуляром, блока уровней, основания. Общий вид квадранта КО-10 представлен на рисунке 2.

Рисунок 2 – Общий вид квадранта КО-10

Оптическая схема квадрантов КО-60 и КО-60М (рисунок 3).

Пучок лучей, попадая в светофильтр (1), проходит далее через оптический лимб (2), линзы объектива (3), сетку с коллективом (4) и линзы окуляра (5). Поле зрения наблюдается в зелёном свете.

А – плоскость делений лимба;
Б – плоскость делений сетки

Рисунок 3 – Оптическая схема квадранта КО-60 / КО-60М

Конструктивно квадрант КО-60 состоит из следующих основных частей: основания (КО-60М – с магнитом), корпуса, крышки, микроскопа отсчётного, зеркала, уровня основного, уровня поперечного, кожуха, винта закрепительного, винта наводящего, индекса. Общий вид квадранта КО-60 / КО-60М представлен на рисунке 4.

Рисунок 4 – Общий вид квадранта КО-60 / КО-60М

Для защиты квадранта от несанкционированного доступа производится пломбировка одного винта на крышке с уровнем, идентификационная наклейка размещается на боковой стороне корпуса, справа.

Метрологические и технические характеристики

Метрологические и технические характеристики приведены в таблице 1

Таблица 1

Harrison and was a sugar and	Модель квадранта		
Наименование показателя	КО-10	КО-60	KO-60M
Диапазон измерений углов по лимбу,°	0-360	±120	
Пределы допускаемой абсолютной погрешности измерений, ²	±10	±30	
Цена деления шкалы отсчётного устройства, ²	10	60	
Цена деления шкалы основного уровня, ²	15	30	
Цена деления шкалы поперечного уровня,¢	4		
Цена деления шкалы лимба,¢	20	60	
Цена деления наружной шкалы,°	5	1	
Габаритные размеры, мм, не более	165′ 120′ 165	155′ 97′ 131	155′ 97′ 151
Масса, кг, не более:			
– квадранта	3,4	2,5	3,5
комплекта с укладкой	6,0	4,0	7,5
Условия эксплуатации по гр. СЗ ГОСТ Р 52931:			
– температура окружающего воздуха, °C	от −10 до +40	от –50 до +50	
– верхнее значение относительной влажности, %	80	при условии пр	оедохранения
		от оса	дков
Установленный полный ресурс, ч, не менее	6000		
Установленный срок службы, лет, не менее	6 6,5		6,5
Длина основания квадранта, мм, не менее	120 148		8
Исполнение	обычное с магнитом		

Знак утверждения типа

наносится на шильдик на основании прибора фотохимическим методом и на титульный лист паспорта типографским способом.

Комплектность средства измерений

Комплектность квадрантов приведена в таблице 2

Таблица2

Обозначение	Hayntayanayyya	Количество		
	Наименование	КО-10	КО-60	КО-60М
Инструменты и принадлежности				
АЛ2.787.046	Квадрант оптический КО-10	1	_	_
АЛЗ.817.001	Квадрант оптический КО-60	_	1	_
АЛЗ.817.002	Квадрант оптический КО-60М	_	_	1
АЛ8.679.008	Ключ	2	1	1
	Тара потребительская			
АЛ4.161.112	Ящик	1	_	_
АЛ4.103.004	Ящик	_	1	_
АЛ4.161.448	Ящик	_	ı	1
Эксплуатационная документация				
АЛ2.787.046 ПС	Квадрант оптический КО-10. Паспорт	1	_	_
АЛЗ.817.001 ПС	Квадрант оптический КО-60. Паспорт	_	1	_
АЛЗ.817.002 ПС	Квадрант оптический КО-60М. Паспорт	_	_	1

Примечание — По заказу может поставляться комплект дополнительных приспособлений для угловых измерений в горизонтальной плоскости: подставка для установки квадранта в положение с вертикальным направлением оси (АЛ4.136.008); блок питания (трансформатор с подсветкой) к поставке (АЛ5.087.014); столик, закрепленный на оси лимба, для использования квадранта в качестве малогабаритного делительного стола (АЛ6.124.097); зеркало металлическое для получения изображения сетки проверяемого прибора (АЛ3.910.007).

Поверка

осуществляется в соответствии с ГОСТ 8.393-2010 «ГСИ. Квадранты оптические. Методы и средства поверки».

Перечень основных средств поверки:

перелена сеновным ередета неверки.	
Наименование	Основные метрологические характеристики
Образцы шероховатости	Ra=1,25 мкм, Ra=0,63 мкм, ПГ(-17%; +12%)
Плоская стеклянная пластина ПИ 60	KT 2
Линейка лекальная ЛД-1-200	KT 2
Меры длины концевые плоскопараллельные	0,994 / 0,995 / 1,000 / 1,01 / 1,001 мм; КТ 2
Плита поверочная	630´400; KT 0
Уровень брусковый	150-0,10; ПГ±0,03 мм
Головка делительная оптическая ОДГЭ-5	ПГ±52
Автоколлиматор АК-0,5У	$\Pi\Gamma\pm3^2$
Мера плоского угла призматическая тип 4	8 граней, 1 разряд
Меры длины концевые плоскопараллельные	(5,12-100) мм 4 разряд; $(50-1000)$ мм 3 разряд
Горизонтальный оптиметр ИКГ	$\Pi\Gamma \pm 0,0003$ мм
Диоптрийная трубка	±5 дптр, ПГ±0,5 дптр

Сведения о методиках (методах) измерений

Методы измерений изложены в АЛ2.787.046 ПС «Квадрант оптический КО-10. Паспорт», АЛ3.817.001 ПС «Квадрант оптический КО-60. Паспорт», АЛ3.817.002 ПС «Квадрант оптический КО-60М. Паспорт».

Нормативные и технические документы, устанавливающие требования к квадрантам КО

- 1 ТУ3-3.179-81 «Квадранты оптические КО-10; КО-60. Технические условия»
- 2 ТУЗ-3.1387-82 «Квадранты оптические КО-60М. Технические условия»
- 3 ГОСТ 8.016-81 «ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений плоского угла»

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

при выполнении работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Изготовитель

Акционерное общество «Швабе – Оборона и Защита» 630049, г. Новосибирск, ул. Дуси Ковальчук, 179/2, тел. (383)2262789, факс (383)2367727, e-mail: npzkanc@ponpz.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ФГУП «СНИИМ»), юридический адрес: 630004, г. Новосибирск, пр. Димитрова, 4; тел.(383) 210-08-14, факс (383) 210-13-60; электронная почта: director@sniim.ru;

Аттестат аккредитации ФГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	С.С. Голубен
М.п.	« » 2015 г